• Активация Толл-подобных рецепторов в полноценном иммунном ответ 
К содержанию

Активация Толл-подобных рецепторов в полноценном иммунном ответ 

PERINATOLOGIYA I PEDIATRIYA. 2014. 1(57):68-73; doi 10.15574/PP.2014.57.68 


Активация Толл-подобных рецепторов в полноценном иммунном ответ 

 

Д.В. Осипчук, Б.В. Донской, В.П. Чернишов

ГУ «Институт педиатрии, акушерства и гинекологии НАМН Украины», г. Киев, Украина

 

УДК 612.017+612.112.94+616.155.32

 

Резюме. Толл-подобные рецепторы — эволюционно консервативная система рецепторов, которая играет ключевую роль в активации неспецифического ответа на патогены, обеспечивая молекулярную идентификацию патогена и последующую активацию основных компонентов неспецифического иммунитета. Нарушенная активность Толл-подобных рецепторов приводит к повышенной чувствительности к инфекциям, иммунодефицитным состояниям, а также ассоциируется с аллергическими и аутоиммунными заболеваниями. В обзоре рассмотрена классификация Толл-подобных рецепторов и лигандов. Сконцентрировано внимание на роли Толл-подобных рецепторов как ключевых активаторов иммунного ответа. Показана роль активации рецепторов в координированном взаимодействии врожденного и адаптивного иммунных ответов. Также рассмотрены дефекты системы Толл-подобных рецепторов, которые лежат в основе иммунодефицитов и ассоциируются с другими иммунологическими нарушениями.

 

Ключевые слова: Толл-подобные рецепторы, иммунная система, иммунодефицит, иммунный ответ.

 

Литература

1.Abdelsadik A, Trad A. 2011. Toll-like receptors on the fork roads between innate and adaptive immunity Hum Immunol. 72: 1188–1193. http://dx.doi.org/10.1016/j.humimm.2011.08.015 PMid:21920397

2. Agnese DM, Calvano JE, Hahm SJ et al. 2002. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of Gram-negative infections. J Infect Dis 186: 1522–1525.

3. Akira S, Takeda K. 2004. Toll-like receptor signaling. Nat Rev Immunol 4: 499–511.

4. Akira S, Takeda K, Kaisho T. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680.

5. Bouma G, Doffinger R, Patel SY et al. 2009. Impaired neutrophil migration and phagocytosis in IRAK-4 deficiency. Br J Haematol 147: 153–156. http://dx.doi.org/10.1111/j.1365-2141.2009.07838.x PMid:19663824

6. Haraguchi S, Day NK, Nelson RPJr et al. 1998. Interleukin 12 deficiency associated with recurrent infections. Proc Natl Acad Sci USA 95: 13125–13129.

7. Kuhns DB, Long Priel DA, Gallin JI. 1997. Endotoxin and IL-1 hyporesponsiveness in a patient with recurrent bacterial infections. J Immunol 158: 3959–3964.

8. Basu S, Fenton MJ. 2004. Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286(5): 887–892.

9. Blander JM, Medzhitov R. 2006. On regulation of phagosome maturation and antigen presentation. Nat Immunol 7: 1029–1035.

10. van Bruggen R, Drewniak A, Tool AT et al. 2010. Toll-like receptor responses in IRAK-4-deficient neutrophils. J Innate Immun 2(3): 280–287. http://dx.doi.org/10.1159/000268288 PMid:20375545

11.Caramalho I, Lopes-Carvalho T, Ostler D et al. 2003. Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197: 403–411.

12. Casrouge A, Zhang S, Eidenschenk C et al. 2006. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314: 308–312.

13. Chao W. 2009. Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol 296(1): 1–12. http://dx.doi.org/10.1152/ajpheart.00995.2008 PMid:19011041 PMCid:PMC2637783

14. Cheng-Lung Ku, Horst von Bernuth, Capucine Picard et al. 2007. Selective predisposition to bacterial infections in IRAK-4–deficient children:IRAK-4–dependent TLRs are otherwise redundant in protective immunity. JEM 204(10): 2407–2422. http://dx.doi.org/10.1084/jem.20070628 PMid:17893200 PMCid:PMC2118442

15. Christensen SR, Shupe J, Nickerson K et al. 2006. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25: 417–428.

16. Cook DN et al. 2004. Toll-like receptors in pathogenesis of human disease. Nat Immunol 5: 975–979.

17. Cooke GS, Segal S, Hill AV. 2002. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347: 1978–1980.

18. Datta SK, Redecke V, Prilliman KR et al. 2003. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol 170: 4102–4110.

19. Danilo Escobar, Jaime Pons, Antonio Clemente et al. 2010. Defective B cell response to TLR9 ligand (CpG-ODN), Streptococcus pneumoniae and Haemophilus influenzae extracts in common variable immunodeficiency patients. Cel Immun 262: 105–111. http://dx.doi.org/10.1016/j.cellimm.2010.01.002 PMid:20171611

20. Doffinger R, Smahi A, Bessia C et al. 2001. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27: 277–285.

21. van Dullemen HM, van Deventer SJ, Hommes DW et al. 1995. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastr 109: 129–35.

22. Dupuis-Girod S, Corradini N, Hadj-Rabia S et al. 2002. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 109: e97.

23. Feterowski C, Emmanuilidis K, Miethke T et al. 2003. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunol 109: 426–431.

24. Fitzner N, Clauberg S, Essmann F et al. 2008. Human skin endothelial cells can express all 10 TLR genes and respond to respective ligands. Clin Vaccine Immunol 15(1): 138–146. http://dx.doi.org/10.1128/CVI.00257-07 PMid:17978010 PMCid:PMC2223852

25. Frost RA, Lang CH. 2008. Regulation of muscle growth by pathogen-associated molecules. J Anim Sci 86(14): 84–93. http://dx.doi.org/10.2527/jas.2007-0483 PMid:18192560

26. Ha SA, Tsuji M, Suzuki K et al. 2006. Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med 203: 2541–2550.

27. Hong SC, Sant’Angelo DB, Dittel BN et al. 1997. The orientation of a T cell receptor to its MHC class II: peptide ligands. J Immunol 159: 4395–4402.

28. Gururajan M, Jacob J, Pulendran B. 2007. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE 2: e863. http://dx.doi.org/10.1371/journal.pone.0000863 PMid:17848994 PMCid:PMC1955832

29. Ingerslev HC, Ossum CG, Lindenstrem T, Nielsen ME. 2010. Fibroblasts express immune relevant genes and are important sentinel cells during tissue damage in rainbow trout. PLoS One 5(2): 93–104. http://dx.doi.org/10.1371/journal.pone.0009304 PMid:20174584 PMCid:PMC2823790

30. Imanishi T, Hara H, Suzuki S et al. 2007. Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178: 6715–6719. http://dx.doi.org/10.4049/jimmunol.178.11.6715 PMid:17513716

31. Iwasaki A, Medzhitov R. 2004. Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10): 987–995.

32. Janeway CA. 1992. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13: 11–16.

33. Jiang D, Liang J, Fan J et al. 2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11: 1173–1179.

34. Joyce EYu, Knight Adina K, Radigan Lin et al. 2009. Toll-like receptor 7 and 9 defects in common variable immunodeficiency. J Allergy Clin Immunol 124(2): 349–356. http://dx.doi.org/10.1016/j.jaci.2009.05.019 PMid:19592080 PMCid:PMC2908501

35. Kabelitz D. 2007. Expression and function of Toll-like receptors in T lymphocytes. Current Opinion in Immunology 19: 39–45. http://dx.doi.org/10.1016/j.coi.2006.11.007 PMid:17129718

36. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373–384. http://dx.doi.org/10.1038/ni.1863 PMid:20404851

37. Kluwe J. Mencin A, Schwabe RF. 2009. Toll-like receptors, wound healing, and carcinogenesis. J Mol Med 87: 125–138. http://dx.doi.org/10.1007/s00109-008-0426-z PMid:19089397 PMCid:PMC2791674

38. Lorenz E, Mira JP, Frees KL et al. 2002. Relevance of mutations in the TLR4 receptor in patients with Gram-negative septic shock. Arch Intern Med 162: 1028–1032.

39. Matzinger P. 2012. The evolution of the danger theory. Expert Rev Clin Immunol 8: 311–317. http://dx.doi.org/10.1586/eci.12.21 PMid:22607177

40. Mansour S, Woffendin H, Mitton S et al. 2001. Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 99: 172–177.

41. Miller LS. 2008. Toll-like receptors in skin. Adv Dermatol 24: 71–87.

42. Nishimura M, Naito S. 2005. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28(5): 886–892. http://dx.doi.org/10.1248/bpb.28.886

43. O'Neill LA. 2008. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226: 10–18. http://dx.doi.org/10.1111/j.1600-065X.2008.00701.x PMid:19161412

44. Orange JS, Jain A, Ballas ZK et al. 2004. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol 113: 725–733.

45. Osamu Takeuchi, Shizuo Akira. 2010. Pattern Recognition Receptors and Inflammation. Cell 140: 805–820. http://dx.doi.org/10.1016/j.cell.2010.01.022 PMid:20303872

46. Pasare C, Medzhitov R. 2005. Control of B-cell responses by Toll-like receptors. Nature. 438: 364–368.

47. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 2008; 321: 691–696. http://dx.doi.org/10.1126/science.1158298 PMid:18669862 PMCid:PMC2688396

48. Sant’Angelo DB, Waterbury G, Preston-Hurlburt P et al. 1996. The specificity and orientation of a TCR to its peptide–MHC class II ligands. Immunity 4: 367–376.

49. Smirnova I, Mann N, Dols A, Derkx HH et al. 2003. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci USA 100: 6075–6080.

50. Rajewsky K. 1996. Clonal selection and learning in the antibody system. Nature 381: 751–758.

51. Ruprecht CR, Lanzavecchia A. 2006. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36: 810–816.

52. Tabiasco J, Devevre E, Rufer N et al. 2006. Human effector CD8+T lymphocytes express TLR3 аs functional coreceptor. J Immunol 177: 8708–8713.

53. Thoma-Uszynski S et al. 2001. Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 291: 1544–1547.

54. Trinchieri G, Sher A. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7(3): 179–190. http://dx.doi.org/10.1038/nri2038 PMid:17318230

55. Trujillo CM, Muskus C, Arango J et al. 2011. Quantitative and Functional Evaluation of Innate Immune Responses in Patients With Common Variable Immunodeficiency. J Investig Allergol Clin Immunol 21(3): 207–215. PMid:21548449

56. Turvey Stuart E, Hawn Thomas R. 2006. Towards subtlety: Understanding the role of Toll-like receptor signaling in susceptibility to human infections. Clin Immun 120: 1–9.

57. Unni AM, Bondar T, Medzhitov R. 2008. Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc Natl Acad Sci USA 105: 1686–1691. http://dx.doi.org/10.1073/pnas.0701675105 PMid:18223157 PMCid:PMC2234205

58. Weller S, Bonnet M, Delagreverie H et al. 2012. IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients. Blood 120 (25): 4992–5001. http://dx.doi.org/10.1182/blood-2012-07-440776 PMid:23002119 PMCid:PMC3525023

59. Yang K, Puel A, Zhang S et al. 2005. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda is IRAK-4 dependent and redundant for protective immunity to viruses. Immun 23: 465–478.

60. Zonana J, Elder ME et al. 2000. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO).Am J Hum Genet 67: 1555–1562.

61. Чернишова ЛІ, Волоха АП. 2013. Дитяча імунологія. К, Медицина.