• Розвиток імунної відповіді при пневмонії, викликаній Klebsiella pneumoniae. Частина 1
ua До змісту Повний текст статті

Розвиток імунної відповіді при пневмонії, викликаній Klebsiella pneumoniae. Частина 1

SOVREMENNAYA PEDIATRIYA.2017.5(85):94-109; doi 10.15574/SP.2017.85.94

Абатуров O. Е., Нікуліна А. O.
ДЗ «Дніпропетровська медична академія МОЗ України», м. Дніпро

У статті висвітлено роль Klebsiella pneumoniae у структурі нозокоміальних пневмоній і механізми формування імунної відповіді, спрямовані на ерадикацію позаклітинного збудника. На підставі аналізу літературних джерел показано сучасне уявлення про функціонування молекулярних механізмів рекогніції клебсієльозних патоген-асоційованих молекулярних структур та індукції внутрішньоклітинних сигнальних шляхів збудження ефекторних клітин респіраторного тракту.
Ключові слова: пневмонія, Klebsiella pneumoniae, діти, імунна відповідь, PRR.

Література

1. Абатуров А.Е. Индукция молекулярных механизмов неспецифической защиты респираторного тракта/ А.Е. Абатуров, А.П. Волосовец, Е.И. Юлиш. — Киев: Приватна друкарня ФО-II Сторожук О.В., 2012. — 240 с.

2. Абатуров А.Е. Инициация воспалительного процесса при вирусных и бактериальных заболеваниях, возможности и перспективы медикаментозного управления / А.Е. Абатуров, А.П. Волосовец, Е.И. Юлиш. — Харьков: ООО «С.А.М.», 2011. — 392 с.

3. Исследование микрофлоры и врожденного иммунитета слизистых оболочек верхних дыхательных путей при внутриутробном инфицировании плода и пневмонии новорожденных / О.А. Свитич, С.М. Омарова, А.И. Алиева [и др.] // Медицинская иммунология. — 2016. — №18(2). — C. 163—170. https://doi.org/10.15789/1563-0625-2016-2-163-170

4. Клебсиеллезный неонатальный сепсис / А.Д. Царегородцев, Х.С. Хаертынов, В.А. Анохин [и др.] // Российский вестн. перинатол. и педиатрии. — 2016. — №61(4). — С.49—54.

doi 10.21508/1027-4065-2016-61-4-49-54.

5. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages / M. Matsumoto, T. Tanaka, T. Kaisho [et al.] // J. Immunol. — 1999. — Vol.163(9). — P.5039—48. PMid:10528209.

6. A role for mitochondria in NLRP3 inflammasome activation / R. Zhou, A.S. Yazdi, P. Menu, J. Tschopp // Nature. — 2011. — Vol.469(7329). — P.221—5. https://doi.org/10.1038/nature09663.

7. A structural, epidemiological & genetic overview of Klebsiella pneumoniae carbapenemases (KPCs) / C.H. Swathi, R. Chikala, K.S. Ratnakar, V. Sritharan // Indian J. Med. Res. — 2016. — Vol.144(1). — P.21—31. https://doi.org/10.4103/0971-5916.193279.

8. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria / C. Berne, A. Ducret, G.G. Hardy, Y.V. Brun // Microbiol Spectr. — 2015. — Vol.3(4). https://doi.org/10.1128/microbiolspec.MB-0018-2015.

9. Anand P.K. Role of the nlrp3 inflammasome in microbial infection / P.K. Anand, R.K. Malireddi, T.D. Kanneganti // Front Microbiol. — 2011. — Vol.2(2). — P.12. https://doi.org/10.3389/fmicb.2011.00012.

10. Antifungal Activity of Plasmacytoid Dendritic Cells against Cryptococcus neoformans In Vitro Requires Expression of Dectin-3 (CLEC4D) and Reactive Oxygen Species / C.R. Hole, C.M. Leopold Wager, A.S. Mendiola [et al.] // Infect. Immun. — 2016. — Vol.84(9). — P. 2493—504. https://doi.org/10.1128/IAI.00103-16.

11. Bauer S. Toll-like receptor 9 processing: the key event in Toll-like receptor 9 activation? / S. Bauer // Immunol. Lett. — 2013. — Vol.149(1—2). — P.85—7. https://doi.org/10.1016/j.imlet.2012.11.003.

12. Biological evaluation of multivalent lewis X-MGL-1 interactions / M. Eriksson, S. Serna, M. Maglinao [et al.] // Chembiochem. — 2014. — Vol.15(6). — P.844—51. https://doi.org/10.1002/cbic.201300764.

13. Both TRIF- and MyD88-dependent signaling contribute to host defense against pulmonary Klebsiella infection / S. Cai, S. Batra, L. Shen [et al.] // J. Immunol. — 2009. — Vol.183. — P.6629—38. https://doi.org/10.4049/jimmunol.0901033; PMid:19846873 PMCid:PMC2777750

14. Broberg C.A. Klebsiella: a long way to go towards understanding this enigmatic jet-setter / C.A. Broberg, M. Palacios, V.L. Miller // F1000Prime Reports. — 2014. — Vol.6. — P.64: https://doi.org/10.12703/P6-64.

15. Brown G.D. Dectin-1: a signalling non-TLR pattern-recognition receptor / G.D. Brown // Nat. Rev. Immunol. — 2006. — Vol.6(1). — P.33—43. https://doi.org/10.1038/nri1745.

16. Capsular Polysaccharide Is Involved in NLRP3 Inflammasome Activation by Klebsiella pneumoniae Serotype K1 / K.F. Hua, F.L. Yang, H.W. Chiu [et al.] // Infect. Immun. — 2015. — Vol.83(9). — P.3396—409. https://doi.org/10.1128/IAI.00125-15.

17. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems / Daikos G.L., Tsaousi S., Tzouvelekis L.S. [et al.] // Antimicrob Agents Chemother. — 2014. — Vol.58. — P.2322—2328. doi 10.1128/AAC. 02166-13.

18. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori / S.I. Gringhuis, J. den Dunnen, M. Litjens [et al.] // Nat. Immunol. — 2009. —Vol.10(10). — P.1081—8. https://doi.org/10.1038/ni.1778.

19. Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria / J.R. Schurr, E. Young, P. Byrne [et al.] // Infect. Immun. — 2005. — Vol.73(1). — P.532—45. https://doi.org/10.1128/IAI.73.1.532-545.2005.

20. Chen I.Y. Response of host inflammasomes to viral infection / I.Y. Chen, T. Ichinohe // Trends Microbiol. — 2015. — Vol.23(1). — P.55—63. https://doi.org/10.1016/j.tim.2014.09.007.

21. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases / L.S. Munoz-Price, L. Poirel, R.A. Bonomo [et al.] // Lancet Infect Dis. — 2013. — Vol.13(9). — P. 785—96. https://doi.org/10.1016/S1473-3099(13)70190-7.

22. Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx / Y.T. Lin, Y.P. Wang, F.D. Wang, C.P. Fung // Front Microbiol. — 2015. — Vol.9. — P.122. https://doi.org/10.3389/fmicb.2015.00122.

23. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice / D.E. Fouts, H.L. Tyler, R.T. DeBoy [et al.] // PLoS Genet. — 2008. — Vol.4:e1000141. https://doi.org/10.1371/journal.pgen.1000141; PMid:18654632 PMCid:PMC2453333

24. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors / P. Jeannin, B. Bottazzi, M. Sironi [et al.] // Immunity. — 2005. — Vol.22(5). — P.551—60. https://doi.org/10.1016/j.immuni.2005.03.008.

25. Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gramnegative bacterial pneumonia / U. Bhan, M.N. Ballinger, X. Zeng [et al.] // PLoS One. — 2010. — Vol.5(3):e9896. https://doi.org/10.1371/journal.pone.0009896.

26. Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome / K. Shenderov, D.L. Barber, K.D. Mayer-Barber [et al.] // J. Immunol. — 2013. — Vol.190(11). — P.5722—30. https://doi.org/10.4049/jimmunol.1203343.

27. Cox N. DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice / N. Cox, D. Pilling, R.H. Gomer // PNAS. — 2015. — N. 27 (112). — P. 8385— 8390. doi 10.1073/pnas.1500956112.

28. C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor / Y. Miyake, K. Toyonaga, D. Mori [et al.] // Immunity. — 2013. — Vol.38(5). — P.1050—62. https://doi.org/10.1016/j.immuni.2013.03.010.

29. C-type lectin receptor Clec4d plays a protective role in resolution of Gram-negative pneumonia / A.L. Steichen, B.J. Binstock, B.B. Mishra, J. Sharma // J. Leukoc. Biol. — 2013. — Vol.94(3). — P.393—8. https://doi.org/10.1189/jlb.1212622.

30. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection / K.I. Happel, M. Zheng, E. Young [et al.] // J. Immunol. — 2003. — Vol.170(9). — P.4432—6. https://doi.org/10.4049/jimmunol.170.9.4432; PMid:12707317 PMCid:PMC2841978

31. Dambuza I.M. C-type lectins in immunity: recent developments / I.M. Dambuza, G.D. Brown // Curr Opin Immunol. — 2015. — Vol.32. — P.21—7. https://doi.org/10.1016/j.coi.2014.12.002.

32. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking / T.B. Geijtenbeek, D.J. Krooshoop, D.A. Bleijs [et al.] // Nat. Immunol. — 2000. — Vol.1(4). — P.353—7. https://doi.org/10.1038/79815.

33. Defects in early cell recruitment contribute to the increased susceptibility to respiratory Klebsiella pneumoniae infection in diabetic mice / N. Martinez, N. Ketheesan, G.W. Martens [et al.] // Microbes Infect. — 2016. —Vol.18(10). — P.649—655. https://doi.org/10.1016/j.micinf.2016.05.007.

34. Devaraj S. C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype / S. Devaraj, I. Jialal // Arterioscler Thromb Vasc Biol. — 2011. — Vol.31(6). — P.1397—402. https://doi.org/10.1161/ATVBAHA.111.225508.

35. Differential post-transcriptional regulation of IL-10 by TLR2 and TLR4-activated macrophages / M. Teixeira-Coelho, J. Guedes, P. Ferreirinha [et al.] // Eur. J. Immunol. — 2014. — Vol.44(3). — P.856—66. https://doi.org/10.1002/eji.201343734.

36. Differential Roles of MyD88 and TRIF in Hematopoietic and Resident Cells During Murine Gram-Negative Pneumonia / M.H. van Lieshout, D.C. Blok, C.W. Wieland [et al.] // J. Infect. Dis. —2012. —Vol.206(9). — P.1415—1423.doi 10.1093/infdis/jis50.

37. Dominguez-Soto A. Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on m2-polarized and tumor-associated macrophagesis macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10 / A. Dominguez-Soto, E. Sierra-Filardi, A. Puig-Kroger // J. Immunol. —2011. — Vol.186(4). — P.2192—200. https://doi.org/10.4049/jimmunol.1000475.

38. Drickamer K. Recent insights into structures and functions of C-type lectins in the immune system / K. Drickamer, M.E. Taylor // Curr Opin Struct. Biol. — 2015. — Vol.34. — P.26—34. https://doi.org/10.1016/j.sbi.2015.06.003.

39. Friedlander C. Uber die scizomyceten bei der acuten fibrosen pneumonie / C. Friedlander // Arch. Pathol. Anat. Physiol. Klin. Med. — 1882. — Vol.87. — P.319—324. https://doi.org/10.1007/BF01880516

40. Garcia-Vallejo J.J. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis / J.J. Garcia-Vallejo, Y. van Kooyk // Immunol Rev. — 2009. — Vol.230(1). — P.22—37. https://doi.org/10.1111/j.1600-065X.2009.00786.x.

41. Garcia-Vallejo J.J. The physiological role of DC-SIGN: a tale of mice and men / J.J. Garcia-Vallejo, Y. van Kooyk // Trends Immunol. — 2013. — Vol.34(10). — P.482—6. https://doi.org/10.1016/j.it.2013.03.001.

42. Geijtenbeek T.B. Signalling through C-type lectin receptors: shaping immune responses / T.B. Geijtenbeek, S.I. Gringhuis // Nat. Rev. Immunol. — 2009. — Vol.9(7). — P.465—79. https://doi.org/10.1038/nri2569.

43. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods / C.R. Lee, J.H. Lee, K.S. Park [et al.] // Front Microbiol. — 2016. — Vol.7. — P.895. https://doi.org/10.3389/fmicb.2016.00895.

44. Hellenic Sepsis Study Group. 2014. Bloodstream infections and sepsis in Greece: over-time change of epidemiology and impact of deescalation on final outcome / Koupetori M., Retsas T., Antonakos N. [et al.] // BMC Infect. Dis. — 2014. — Vol.14. — P.272. https://doi.org/10.1186/1471-2334-14-272.

45. Hoogerwerf J.J. Interleukin-1 receptor-associated kinase M-deficient mice demonstrate an improved host defense during Gram-negative pneumonia / J.J. Hoogerwerf, G.J. van der Windt, D.C. Blok // Mol. Med. — 2012. — Vol.18. — P.1067—75. doi https://doi.org/10.2119/molmed.2011.00450.

46. Host defence during Klebsiella pneumonia relies on haematopoietic-expressed Toll-like receptors 4 and 2 / C.W. Wieland, M.H. van Lieshout, A.J. Hoogendijk, T. van der Poll // Eur Respir J. — 2011. — Vol.37(4). — P.848—57. https://doi.org/10.1183/09031936.00076510.

47. Host innate immune receptors and beyond: making sense of microbial infections / K.J. Ishii, S. Koyama, A. Nakagawa [et al.] // Cell HostMicrobe. — 2008. — Vol.3(6). — P. 352—63. https://doi.org/10.1016/j.chom.2008.05.003.

48. Huang X. Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses / X. Huang, Y. Yang // Expert. Opin. Ther Targets. — 2010. — Vol.14(8). — P.787—96. https://doi.org/10.1517/14728222.2010.501333.

49. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning / K. Ariizumi, G.L. Shen, S. Shikano [et al.] // J. Biol. Chem. — 2000. — Vol.275(26). — P.2015—67. https://doi.org/10.1074/jbc.M909512199.

50. Identification of Two Genes Encoding for the Late Acyltransferases of Lipid A in Klebsiella pneumonia / Y. Li, J. Yun, L. Liu [et al.] // Curr Microbiol. — 2016. — Vol.73(5). — P.732—8. https://doi.org/10.1007/s00284-016-1117-6.

51. Inflammasomes and its importance in viral infections / G. Shrivastava, M. Leon-Juarez, J. Garcia-Cordero [et al.] // Immunol. Res. — 2016. — Vol.64(5—6). — P.1101—1117. https://doi.org/10.1007/s12026-016-8873-z; PMid:27699580.

52. Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils / K.P. van Gisbergen, I.S. Ludwig, T.B. Geijtenbeek, Y. van Kooyk // FEBS Lett. — 2005. — Vol.579(27). — P.6159—68. https://doi.org/10.1016/j.febslet.2005.09.089.

53. Interactions of Klebsiella pneumonia with the innate immune system vary in relation to clone and resistance phenotype / I.M. Pantelidou, I. Galani, M. Georgitsi [et al.] // Antimicrob Agents Chemother. — 2015. — Vol. 59(11). — P.703643. https://doi.org/10.1128/AAC.01405-15.

54. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection / P. Ye, P.B. Garvey, P. Zhang [et al.] // Am. J. Respir. Cell Mol Biol. — 2001. — Vol.25(3). — P.335—40. https://doi.org/10.1165/ajrcmb.25.3.4424.

55. Jain A. IL-1 Receptor-Associated Kinase Signaling and Its Role in Inflammation, Cancer Progression, and Therapy Resistance / A. Jain, S. Kaczanowska, E. Davila // Front Immunol. — 2014. — Vol.5. — P.553. https://doi.org/10.3389/fimmu.2014.00553.

56. Kerscher B. The Dectin-2 family of C-type lectin-like receptors: an update / B. Kerscher, J.A. Willment, G.D. Brown // Int. Immunol. — 2013. —Vol.25(5). — P.271—7. https://doi.org/10.1093/intimm/dxt006.

57. Kingeter L.M. C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses / L.M. Kingeter, X. Lin // Cell Mol. Immunol. — 2012. — Vol.9(2). — P.105—12. https://doi.org/10.1038/cmi.2011.58.

58. Klebsiella pneumonia increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells / V. Regueiro, D. Moranta, M.A. Campos [et al.] // Infect. Immun. — 2009. — №77(2): 714—724. doi 10.1128/IAI.00852-08.

59. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia [Electronic resource] / V.I. Holden, P. Breen, S. Houle [et al.] // mBio. — 2016. — Sep-Oct; 7(5): e01397-16. Published online 2016 Sep 13. https://doi.org/10.1128/mBio.01397-16.

60. Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation / C.G. Frank, V. Reguerio, M. Rother [et al.] // Cell Microbiol. — 2013. — Vol.15(7). — P.1212—33. https://doi.org/10.1111/cmi.12110.

61. Lee D.H. Innate immunity induced by fungal β-glucans via dectin-1 signaling pathway / D.H. Lee, H.W. Kim // Int. J. Med. Mushrooms. — 2014. — Vol.16(1). — P. 1—16. https://doi.org/10.1615/IntJMedMushr.v16.i1.10.

62. Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion / P.C. Liao, L.K. Chao, J.C. Chou [et al.] // Inflamm Res. — 2013. — Vol.62(1). — P.89—96. https://doi.org/10.1007/s00011-012-0555-2.

63. Macrophage Galactose-Type Lectin-1 Deficiency Is Associated with Increased Neutrophilia and Hyperinflammation in Gram-Negative Pneumonia / C.N. Jondle, A. Sharma, T.J. Simonson [et al.] // J. Immunol. 2016. — Vol.196(7). — P. 3088—96. https://doi.org/10.4049/jimmunol.1501790.

64. March C. Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells/ C. March, D. Moranta, V. Regueiro et al // J Biol Chem. 2011 Mar 25;286(12):9956—67. https://doi.org/10.1074/jbc.M110.181008.

65. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway / A. Podsiad, T.J. Standiford, M.N. Ballinger [et al.] // Am. J. Physiol. Lung Cell Mol Physiol. — 2016. —Vol.310(5). — P.465—75. https://doi.org/10.1152/ajplung.00224.2015.

66. Molecular mechanisms regulating NLRP3 inflammasome activation / E.K. Jo, J.K. Kim, D.M. Shin, C. Sasakawa // Cell Mol. Immunol. — 2016. —Vol.13(2). — P.148—59. doi 10.1038/cmi.2015.

67. Molecular pathogenesis of Klebsiella pneumonia / B. Li, Y. Zhao, C. Liu [et al.] // Future Microbiol. — 2014. — Vol.9(9). — P.1071—81. https://doi.org/10.2217/fmb.14.48.

68. Mutwiri G. TLR9 agonists: immune mechanisms and therapeutic potential in domestic animals / G. Mutwiri // Vet Immunol. Immunopathol. — 2012. — Vol.148(1—2). — P. 85—9. https://doi.org/10.1016/j.vetimm.2011.05.032.

69. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens / N. Branzk, A. Lubojemska, S.E. Hardison [et al.] // Nat. Immunol. — 2014. —Vol.15(11). — P.1017—25. https://doi.org/10.1038/ni.2987.

70. NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection /S. Cai, S. Batra, N. Wakamatsu [et al.] //J. Immunol. — 2012. — Vol.188(11). — P.5623—35. doi 0.4049/jimmunol. 1200195.

71. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways / S.B. Willingham, I.C. Allen, D.T. Bergstralh [et al.] // J. Immunol. — 2009. — Vol.183(3). — P.2008—15. https://doi.org/10.4049/jimmunol.0900138.

72. Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands / B. Bertolotti, B. Oroszova, I. Sutkeviciute [et al.] //Carbohydr Res. — 2016. — Vol.435. — P.7—18. https://doi.org/10.1016/j.carres.2016.09.005.

73. Noreen M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAPpolymorphisms with disease susceptibility / M. Noreen, M. Arshad // Immunol Res. — 2015. — Vol.62(2). — P.234—52. https://doi.org/10.1007/s12026-015-8640-6.

74. Outbreak of Klebsiella pneumoniae carbapenemase-producing K pneumoniae: A systematic review / A.C. Campos, J. Albiero, A.B. Ecker [et al.] // Am. J. Infect. Control. — 2016. — Vol.44(11). — P.1374—1380. https://doi.org/10.1016/j.ajic.2016.03.022.

75. Outer membrane protein A renders dendritic cells and macrophages responsive to CCL21 and triggers dendritic cell migration to secondary lymphoid organs / P. Jeannin, G. Magistrelli, N. Herbault [et al.] // Eur. J. Immunol. — 2003. — Vol.33(2). — P.326—33. https://doi.org/10.1002/immu.200310006.

76. Paczosa M.K. Klebsiella pneumoniae: Going on the Offense with a Strong Defense / M.K. Paczosa, J. Mecsas // Microbiol. Mol. Biol. Rev. — 2016. — Vol.80(3). — P.629—61. https://doi.org/10.1128/MMBR.00078-15.

77. Plato A. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways / A. Plato, J.A. Willment, G.D. Brown // Int. Rev. Immunol. — 2013. — Vol.32(2). — P.134—56. https://doi.org/10.3109/08830185.2013.777065.

78. Plato A. Pattern recognition receptors in antifungal immunity / A. Plato, S.E. Hardison, G.D. Brown // Semin Immunopathol. — 2015. — Vol.37(2). — P.97—106. https://doi.org/10.1007/s00281-014-0462-4.

79. Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation / I.T. Chen, P.H. Hsu, W.C. Hsu [et al.] // Sci Rep. — 2015. — Vol.5. — P.12300. https://doi.org/10.1038/srep12300.

80. Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation / A. Sharma, A.L. Steichen, C.N. Jondle [et al.] // J. Infect. Dis. — 2014. — Vol.209(11). — P.1837—46. https://doi.org/10.1093/infdis/jit820.

81. Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulants / A. Berzi, S. Ordanini, B. Joosten [et al.] // Sci Rep. — 2016. — Vol.6. — P.35373. https://doi.org/10.1038/srep35373.

82. Revealing the genetic determinants of Pks-pathogenicity island in clinical strains of Enterobacteria / S.V. Fialkina, V.M. Bondarenko, I.L. Naboka [et al.] // Zh Mikrobiol. Epidemiol. Immunobiol. — 2011. — Vol.(5). — P.3-7. [Russian]; http://bigsdb.web.pasteur.fr/klebsiella/klebsiella. html. PMid:22145340

83. Richardson M.B. MCL and Mincle: C-Type Lectin Receptors That Sense Damaged Self and Pathogen-Associated Molecular Patterns / M.B. Richardson, S.J. Williams // Front Immunol. — 2014. — Vol.5. — P.288. https://doi.org/10.3389/fimmu.2014.00288.

84. Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes / C. March, V. Cano, D. Moranta [et al.] // PLoS One. — 2013. — Vol. 8: e56847. https://doi.org/10.1371/journal.pone.0056847; PMid:23457627 PMCid:PMC3574025

85. Role of TLR2 and TLR4 in human neutrophil functions against Paracoccidioides brasiliensis / M.J. Acorci-Valerio, A.P. Bordon-Graciani, L.A. Dias-Melicio [et al.] // Scand. J. Immunol. — 2010. — Vol.71(2). — P.99—108. https://doi.org/10.1111/j.1365-3083.2009.02351.x.

86. Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumonia / B. Evrard, D. Balestrino, A. Dosgilbert [et al.] // Infect. Immun. — 2010. — Vol.78(1). —P.210—9. https://doi.org/10.1128/IAI.00864-09.

87. Sandiumenge A. Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management / А. Sandiumenge, J. Rello // Curr Opin Pulm Med. — 2012. — Vol.18(3). — P.187— 93. https://doi.org/10.1097/MCP.0b013e328351f974.

88. Schnaar R.L. Glycobiology simplified: diverse roles of glycan recognition in inflammation / R.L. Schnaar // J. Leukoc. Biol. — 2016. — Vol.99(6). — P.825-38. https://doi.org/10.1189/jlb.3RI0116-021R.

89. Shon A.S. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed / A. S. Shon, R. P. Bajwa, T. A. Russo // Virulence. — 2013. — Vol. 4, № 2. — P. 107—118. https://doi.org/10.4161/viru.22718.

90. Shu C. Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes / C. Shu, S. Wang, T. Xu // Dev Comp Immunol. — 2015. — Vol.50(1). — P.19-25. https://doi.org/10.1016/j.dci.2015.01.004.

91. Silva-Gomes S. Pathogen-Associated Molecular Patterns (PAMPs) / S. Silva-Gomes, A. Decout, J. Nigou // Encyclopedia of Inflammatory Diseases. — 2015. — P.1—16.

92. Smith D.G. Immune sensing of microbial glycolipids and related conjugates by T cells and the pattern recognition receptors MCL and Mincle / D.G. Smith, S.J. Williams // Carbohydr Res. — 2016. — Vol.420. — P.32—45. https://doi.org/10.1016/j.carres.2015.11.009.

93. Soto E. Teraction of non-human primate complement and antibodies with hypermucoviscous Klebsiella pneumoniae / E. Soto, S. Marchi, A. Beierschmitt // Vet Res. — 2016. — Vol.47. — P.40. https://doi.org/10.1186/s13567-016-0325-1.

94. Structure and immunological characterization of the capsular polysaccharide of a pyrogenic liver abscess caused by Klebsiella pneumoniae: activation of macrophages through Toll-like receptor 4 / F.L. Yang, Y.L. Yang, P.C. Liao [et al.] // J. Biol. Chem. — 2011. — Vol.286(24). — P. 21041—51. https://doi.org/10.1074/jbc.M111.222091.

95. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities / R.T. Lee, T.L. Hsu, S.K. Huang [et al.] // Glycobiology. — 2011. — Vol.21(4). — P.512—20. https://doi.org/10.1093/glycob/cwq193.

96. Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity / D. Strasser, K. Neumann, H. Bergmann [et al.] // Immunity. — 2012. — Vol.36 (1). — P.32—42. https://doi.org/10.1016/j.immuni.2011.11.015.

97. The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase /L.M. Graham, V. Gupta, G. Schafer [et al.] // J. Biol. Chem. — 2012. — Vol. 287(31). — P.25964—74. https://doi.org/10.1074/jbc.M112.384164.

98. The human C-type lectin CLECSF8 is a novel monocyte/macrophage endocytic receptor / I. Arce, L. Martinez-Munoz, P. Roda-Navarro, E. Fernandez-Ruiz // Eur. J. Immunol. — 2004. — Vol.34 (1). — P.210—232. https://doi.org/10.1002/eji.200324230.

99. The molecular basis for recognition of bacterial ligands at equineTLR2, TLR1 and TLR6 / K.L. Irvine, L.J. Hopkins, M. Gangloff,C.E. Bryant // Vet Res. — 2013. — Vol.44. — P.50. https://doi.org/10.1186/1297-9716-44-50.

100. The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection / F.M. Marim, M.M. Franco, M.T. Gomes [et al.] // Semin Immunopathol. — 2016. — Jul 12. https://doi.org/10.1007/s00281-016-0581-1.

101. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity / R.A. Drummond, S. Saijo, Y. Iwakura, G.D. Brown // Eur. J. Immunol. — 2011. — Vol.41(2). — P.276—81. https://doi.org/10.1002/eji.201041252.

102. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis / E.F. Neubauer, A.Z. Poole, V.M. Weis, S.K. Davy // Peer. J. — 2016. — Vol.4:e2692. https://doi.org/10.7717/peerj.2692.

103. TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells / U. Bhan, N.W. Lukacs, J.J. Osterholzer [et al.] // J. Immunol. — 2007. — Vol.179(6). — P.3937—46. https://doi.org/10.4049/jimmunol.179.6.3937.

104. Toll/IL-1R domain-containing adaptor protein (TIRAP) is a critical mediator of antibacterial defense in the lung against Klebsiella pneumoniae but not Pseudomonas aeruginosa / S. Jeyaseelan, S.K. Young, M. Yamamoto [et al.] // J. Immunol. — 2006. — Vol.177(1). — P.538-47. https://doi.org/10.4049/jimmunol.177.1.538.

105. Toll-like receptor 6 V327M polymorphism is associated with an increased risk of Klebsiella pneumoniae infection / H. Yang, X. Zhang, J. Geng [et al.] // Pediatr. Infect. Dis J. — 2014. — Vol.33(11). — e310-5. https://doi.org/10.1097/INF.0000000000000395.

106. Tomas A. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κ B) Signaling / A. Tomas, L. Lery, V. Regueiro // J. Biol. Chem. — 2015. — Vol.290(27). — P.16678-97. doi 10.1074/jbc.M114. 621292.

107. Van Kooyk Y. C-type lectins on dendritic cells: key modulators for the induction of immune responses / Y. van Kooyk // Biochem Soc Trans. — 2008. — Vol.36(Pt 6). — P.1478—81. https://doi.org/10.1042/BST0361478.

108. Van Kooyk Y. Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL / Y. van Kooyk, J.M. Ilarregui, S.J. van Vliet // Immunobiology. — 2015. — Vol.220(2). — P.185—92. https://doi.org/10.1016/j.imbio.2014.10.002.

109. Yang C.S. The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases / C.S. Yang, D.M. Shin, E.K. Jo // Int. Neurourol. J. — 2012. — Vol.16(1). — P.2—12. https://doi.org/10.5213/inj.2012.16.1.2.

110. Zelensky A.N. The C-type lectin-like domain superfamily / A.N. Zelensky, J.E. Gready // FEBS J. — 2005. — Vol.272(24). — P.6179—217. https://doi.org/10.1111/j.1742-4658.2005.05031.x.

111. Zhang F. DC_SIGN, DC-SIGNR and LSECtin: C-type lectins for infection / F. Zhang, S. Ren, Y. Zuo // Int. Rev. Immunol. — 2014. — Vol.33(1). — P.54—66. https://doi.org/10.3109/08830185.2013.834897.

112. β2 integrins (CD11/18) are essential for the chemosensory adhesion and migration of polymorphonuclear leukocytes on bacterial cellulose / G.D. Kim, S.E. Lee, H. Yang [et al.] // J. Biomed. Mater Res. A. — 2015. — Vol.103(5). — P.1809—17. https://doi.org/10.1002/jbm.a.35316.