• Развитие иммунного ответа при пневмококковой пневмонии (часть 1) 
ru К содержанию Полный текст статьи

Развитие иммунного ответа при пневмококковой пневмонии (часть 1) 

SOVREMENNAYA PEDIATRIYA.2016.4(76):47-56; doi10.15574/SP.2016.76.47


Развитие иммунного ответа при пневмококковой пневмонии (часть 1) 

Абатуров А. Е., Никулина А. А., Петренко Л. Л.

ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина 

В статье представлена роль пневмококковой инфекции в структуре острых бактериально ассоциированных заболеваний респираторного тракта у детей и механизмы формирования иммунного ответа, направленные на эрадикацию внеклеточного возбудителя. На основании анализа литературных источников дано современное представление о функционировании молекулярних механизмов рекогниции пневмококковых патоген-ассоциированных молекулярных структур и индукции внутриклеточных сигнальных путей возбуждения эффекторных клеток респіраторного тракта. Продемонстрировано, что для инициации воспалительного процесса при пневмококковой инфекции необходимо, как минимум, два сигнала, один из которых активирует образ-распознающие рецепторы, а второй обуславливает формирование и активацию инфламмасомы.


Ключевые слова: пневмония, Streptococcus pneumoniae, дети, иммунный ответ, PRR, инфламмасома.


Литература

1. Абатуров А. Е. Инициация воспалительного процесса при вирусных и бактериальных заболеваниях, возможности и перспективы медикаментозного управления / А. Е. Абатуров, А. П. Волосовец, Е. И. Юлиш. — Харьков : ООО «С.А.М.», 2011. — 392 с.

2. Введение в иммунологию инфекционного процесса для педиатров и врачей общей практики — семейной медицины / А. Е. Абатуров, Е. А. Агафонова, О. Н. Герасименко, Е. Л. Кривуша. — Киев : ООО «Джулия Принт», 2012. — 176 с.

3. Пневмококковая пневмония у детей: уроки повседневной практики / Л. С. Намазова-Баранова, Т. В. Куличенко, А. Е. Малахова [и др.] // Вопросы совр. педиатрии. 2012. — Т. 11. № 4. — С. 65—72.

4. Распространенность пневмококковых пневмоний и отитов у детей младшего возраста (предварительные данные) / С. М. Харит, С. В. Сидоренко, А. А. Рулева [и др.] // Вопросы совр. педиатрии. — 2011. — Т. 10, № 6. — С. 103—107.

5. Association of serotype with risk of death due to pneumococcal pneumonia: a meta;analysis / D. M. Weinberger, Z. B. Harboe, E. A. Sanders [et al.] // Clin. Infect. Dis. — 2010. —Vol. 51 (6). — P. 692—9. http://dx.doi.org/10.1086/655828.

6. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence/ V. Agarwal, M. Sroka, M. Fulde [et al.] // J. Biol. Chem. — 2014. — Vol. 289 (22). — P. 15833—44. http://dx.doi.org/10.1074/jbc.M113.530212.

7. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates / K. L. O'Brien, L. J. Wolfson, J. P. Watt [et al.] // Lancet. — 2009. —Vol. 374 (9693). — P. 893—902. http://dx.doi.org/10.1016/S0140-6736(09)61204-6.

8. Calbo E. Of mice and men: innate immunity in pneumococcal pneumonia / Е. Calbo, J. Garau // Int. J. Antimicrob. Agents. — 2010. — Vol. 35 (2). — P. 107—13. http://dx.doi.org/10.1016/j.ijantimicag.2009.10.002.

9. Cao X. Self;regulation and cross;regulation of pattern;recognition receptor signalling in health and disease / X. Cao // Nat. Rev. Immunol. — 2016. — Vol. 16 (1). — P. 35—50. http://dx.doi.org/10.1038/nri.2015.8

10. Cassidy S. K. More than a pore: the cellular response to cholesterol-dependent cytolysins / S. K. Cassidy, M. X. O'Riordan // Toxins (Basel). — 2013. — Vol. 5 (4). — P. 618—36. http://dx.doi.org/10.3390/toxins5040618.

11. Chen G. The inflammasome in host defense / G. Chen, J. H. Pedra // Sensors (Basel). —2010. — Vol. 10 (1). — P. 97—111. http://dx.doi.org/10.3390/s100100097.

12. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation/ L. Ferrero;Miliani, O.H. Nielsen, P.S. Andersen, S.E. Girardin// Clin Exp Immunol. 2007 Feb;147(2):227—35. http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x.

13. Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumonia / C. Draing, M. Pfitzenmaier, S. Zummo [et al.] // J. Biol. Chem. — 2006. — Vol. 281 (45). — P. 33849—59. http://dx.doi.org/10.1074/jbc.M602676200.

14. CpG oligonucleotide activates Toll;like receptor 9 and causes lung inflammation in vivo / P. Knuefermann, G. Baumgarten, A. Koch [et al.] // Respir. Res. — 2007. — Vol. 8. — P. 72. http://dx.doi.org/10.1186/1465-9921-8-72.

15. Critical roles of ASC inflammasomes in caspase;1 activation and host innate resistance to Streptococcus pneumoniae infection / R. Fang, K. Tsuchiya, I. Kawamura [et al.] // J. Immunol. 2011. — Vol. 187 (9). — P. 4890—9. http://dx.doi.org/10.4049/jimmunol.1100381.

16. Davis K. M. Nod2 sensing of lysozyme;digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice / K. M. Davis, S. Nakamura, J. N. Weiser // J. Clin. Invest. — 2011. — Vol. 121 (9). — P. 3666—76. http://dx.doi.org/10.1172/JCI57761.

17. Divergent functions of Toll;like receptors during bacterial lung infections / P. Baral, S. Batra, R. L. Zemans [et al.] // Am. J. Respir. Crit Care Med. — 2014. — Vol. 190 (7). — P. 722—32. http://dx.doi.org/10.1164/rccm.201406-1101PP.

18. Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo / S. Chimalapati, J. M. Cohen, E. Camberlein [et al.] // PLoS One. — 2012. — Vol. 7 (7). e41393. http://dx.doi.org/10.1371/journal.pone.0041393.

19. Epicutaneous immunization with phosphorylcholine conjugated to bovine serum albumin (PC;BSA) and TLR9 ligand CpG alleviates pneumococcal pneumonia in mice / M. Majewska;Szczepanik, N. Yamamoto, P. W. Askenase, M. Szczepanik // Pharmacol Rep. — 2014 Vol. 66 (4). — P. 570—5. http://dx.doi.org/10.1016/j.pharep.2014.02.023.

20. EstA protein, a novel virulence factor of Streptococcus pneumoniae, induces nitric oxide and pro;inflammatory cytokine production in RAW 264.7 macrophages through NF;kappaB/MAPK / E. H. Kang, E. Gebru, M. H. Kim [et al.] // Microb Pathog. — 2009. —Vol. 47 (4). — P. 196—201. http://dx.doi.org/10.1016/j.micpath.2009.07.002.

21. Fitzgerald K. A. NLR;containing inflammasomes: central mediators of host defense and inflammation / K. A. Fitzgerald // Eur. J Immunol. — 2010. — Vol. 40 (3). — P. 595—8. http://dx.doi.org/10.1002/eji.201040331.

22. GHIP in Streptococcus pneumoniae is involved in antibacterial resistance and elicits a strong innate immune response through TLR2 and JNK/p38MAPK / J. Dong, J. Wang, Y. He [et al.] // FEBS J. — 2014. — Vol. 281 (17). — P. 3803—15. http://dx.doi.org/10.1111/febs.12903.

23. Griffith J. W. Chemokines and chemokine receptors: positioning cells for host defense and immunity / J. W. Griffith, C. L. Sokol, A. D. Luster // Annu Rev Immunol. — 2014. — Vol. 32. — P. 659—702. http://dx.doi.org/10.1146/annurev-immunol-032713-120145.

24. Identification of oxidative stress and Toll;like receptor 4 signaling as a key pathway of acute lung injury / Y. Imai, K. Kuba, G. G. Neely [et al.] // Cell. — 2008. — Vol. 133 (2). — P. 235—49. http://dx.doi.org/10.1016/j.cell.2008.02.043.

25. Inflammasome, IL-1 and inflammation in ozone;induced lung injury / C. Michaudel, A. Couturier;Maillard, P. Chenuet [et al.] // Am. J. Clin. Exp. Immunol. — 2016. — Vol. 5 (1). — P. 33—40. PMCid:PMC4858604

26. Innate immunity to pneumococcal infection of the central nervous system depends on toll;like receptor (TLR) 2 and TLR4 / M. Klein, B. Obermaier, B. Angele [et al.] // J. Infect. Dis. — 2008. — Vol. 198 (7). — P. 1028—36. http://dx.doi.org/10.1086/591626.

27. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium / T. B. Clarke, N. Francella, A. Huegel, J. N. Weiser // Cell Host Microbe. — 2011. — Vol. 9 (5). — P. 404—14. http://dx.doi.org/10.1016/j.chom.2011.04.012.

28. IRAK-4 deficiency as a cause for familial fatal invasive infection by Streptococcus pneumonia / S. Grazioli, S. J. Hamilton, M. L. McKinnon [et al.] // Clin. Immunol. — 2016.—Vol. 163. — P. 14—6. http://dx.doi.org/10.1016/j.clim.2015.12.007.

29. Kedziora S. Molekularne mechanizmy towarzyszace rozpoznawaniu patogenu przez receptory wrodzonej odpornosci / S. Kedziora, R. Slotwinski // Postepy Hig. Med. Dosw. (online). — 2009. — Vol. 63. — P. 30—38.

30. Kim Y. K. NOD-Like Receptors in Infection, Immunity, and Diseases / Y. K. Kim, J. S. Shin, M. H. Nahm // Yonsei Med. J. — 2016. — Vol. 57 (1). — P. 5—14. http://dx.doi.org/10.3349/ymj.2016.57.1.5.

31. KLF4 regulates the expression of interleukin;10 in RAW264.7 macrophages / J. Liu, H. Zhang, Y. Liu [et al.] // Biochem. Biophys. Res. Commun. — 2007. — Vol. 362 (3). — P. 575—81. http://dx.doi.org/10.1016/j.bbrc.2007.07.157.

32. Koppe U. Recognition of Streptococcus pneumoniae by the innate immune system / U. Koppe, N. Suttorp, B. Opitz // Cell Microbiol. — 2012. — Vol. 14 (4). — P. 460—6. http://dx.doi.org/10.1111/j.1462-5822.2011.01746.x.

33. Kumar H. Pathogen recognition by the innate immune system / H. Kumar, T. Kawai, S. Akira // Int. Rev. Immunol. — 2011. — Vol. 30 (1). — P. 16—34. http://dx.doi.org/10.3109/08830185.2010.529976.

34. LaRock C. N. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens / C. N. LaRock, V. Nizet // Biochim Biophys Acta. — 2015. — Vol. 1848 (11 Pt B). — P. 3047—54. http://dx.doi.org/10.1016/j.bbamem.2015.02.010.

35. LaRock C. N. Inflammasome /IL-1β Responses to Streptococcal Pathogens / C. N. LaRock, V. Nizet // Front Immunol. — 2015. — Vol. 6. — P. 518. http://dx.doi.org/10.3389/fimmu.2015.00518.

36. Latz E. The inflammasomes: mechanisms of activation and function / E. Latz // Curr Opin Immunol. — 2010. — Vol. 22 (1). — P. 28—33. http://dx.doi.org/10.1016/j.coi.2009.12.004.

37. Lich J. D. CATERPILLER (NLR) family members as positive and negative regulators of inflammatory responses / J. D. Lich, J. P. Ting // Proc Am. Thorac. Soc. — 2007. — Vol. 4 (3). —P. 263—6. http://dx.doi.org/10.1513/pats.200701-022AW; PMid:17607010 PMCid:PMC2647628.

38. Liu Q. The molecular mechanisms of TLR;signaling cooperation in cytokine regulation / Q. Liu, J. L. Ding // Immunol Cell Biol. — 2016. — Feb 10. http://dx.doi.org/10.1038/icb.2016.18.

39. Mansur D. S. Intracellular sensing of viral DNA by the innate immune system / D. S. Mansur, G. L. Smith, B. J. Ferguson // Microbes Infect. — 2014. — Vol. 16 (12). — P. 1002—12. http://dx.doi.org/10.1016/j.micinf.2014.09.010.

40. Marriott H. M. Pneumolysin: a double;edged sword during the host-pathogen interaction / H. M. Marriott, T. J. Mitchell, D. H. Dockrell // Curr Mol Med. — 2008. — Vol. 8 (6). — P. 497—509. doi: 0.2174/156652408785747924.

41. McGuire V. A. Subverting Toll;Like Receptor Signaling by Bacterial Pathogens / V. A. McGuire, J. S. Arthur // Front Immunol. — 2015. — Vol. 6. — P. 607. http://dx.doi.org/10.3389/fimmu.2015.00607.

42. Mini-review: novel therapeutic strategies to blunt actions of pneumolysin in the lungs / R. Lucas, I. Czikora, S. Sridhar [et al.] // Toxins (Basel). — 2013. — Vol. 5 (7). — P. 1244—60. http://dx.doi.org/10.3390/toxins5071244.

43. Mitchell T. J. The biology of pneumolysin / T. J. Mitchell, C. E. Dalziel // Subcell Biochem. — 2014. — Vol. 80. — P. 145—60. doi: 10.1007/978-94-017-8881-6-8.

44. MKP1 regulates the induction of MUC5AC mucin by Streptococcus pneumoniae pneumolysin by inhibiting the PAK4-JNK signaling pathway / U. H. Ha, J. H. Lim, H. J. Kim [et al.] // J. Biol. Chem. — 2008. — Vol. 283 (45). — P. 30624—31. http://dx.doi.org/10.1074/jbc.M802519200.

45. Musher D. M. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and treatment / D. M. Musher // Clin. Infect. Dis. — 1992 — Vol. 14 (4). — P. 801—7. http://dx.doi.org/10.1093/clinids/14.4.801.

46. NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia / M.H. van Lieshout, B. P. Scicluna, S. Florquin, van der Poll T. // Am. J. Respir. Cell Mol Biol. — 2014. — Vol. 50 (4). — P. 699—712. http://dx.doi.org/10.1165/rcmb.2013-0015OC..

47. NOD-like receptors: versatile cytosolic sentinels / V. Motta, F. Soares, T. Sun, D. J. Philpott // Physiol Rev. — 2015. — Vol. 95 (1). — P. 149—78. http://dx.doi.org/10.1152/physrev.00009.2014.

48. Parker D. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract / D. Parker, F. J. Martin, G. Soong [et al.] // MBio. — 2011. — Vol. 2 (3):e00016—11. http://dx.doi.org/10.1128/mBio.00016-11.

49. Picard C. Inherited human IRAK-4 deficiency: an update / C. Picard, H. von Bernuth, C. L. Ku // Immunol Res. — 2007. — Vol. 38 (1—3). — P. 347—52. http://dx.doi.org/10.1007/s12026-007-0006-2; PMid:17917042.

50. Pneumococci induced TLR- and Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter in lung epithelial cells / B. Schmeck, S. Huber, K. Moog [et al.] // Am. J. Physiol. Lung Cell Mol Physiol. — 2006. — Vol. 290 (4). — P. 730—737. http://dx.doi.org/10.1152/ajplung.00271.2005.

51. Pneumolysin activates the NLRP3 inflammasome and promotes proin-flammatory cytokines independently of TLR4 / McNeela E. A., Burke A., Neill D. R. [et al.] // PLoS Pathog. 2010. — Vol. 6 (11). — P. 1001191. http://dx.doi.org/10.1371/journal.ppat.1001191.

52. Price K. E. Pneumolysin localizes to the cell wall of Streptococcus pneumonia / K. E. Price, A. Camilli // J. Bacteriol. — 2009. — Vol. 191 (7). — P. 2163—8. http://dx.doi.org/10.1128/JB.01489-08.

53. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection / R. Malley, P. Henneke, S. C. Morse [et al.] // Proc. Natl Acad Sci U S A. — 2003.—Vol. 100 (4). — P. 1966—71. http://dx.doi.org/10.1073/pnas.0435928100.

54. Recognition of Streptococcus pneumoniae and muramyl dipeptide by NOD2 results in potent induction of MMP-9, which can be controlled by lipopolysaccharide stimulation / M. Vissers, Y. Hartman, L. Groh [et al.] // Infect. Immun. — 2014. — Vol. 82 (12). — P. 4952—8. http://dx.doi.org/10.1128/IAI.02150-14.

55. Roers A. Recognition of Endogenous Nucleic Acids by the Innate Immune System / A. Roers, B. Hiller, V. Hornung // Immunity. — 2016. — Vol. 44 (4). — P. 39—54. http://dx.doi.org/10.1016/j.immuni.2016.04.002.

56. Role of Nucleotide;Binding Oligomerization Domain-Containing (NOD) 2 in Host Defense during Pneumococcal Pneumonia / T. J. Hommes, M. H. van Lieshout, C. van 't Veer [et al.] // PLoS One. — 2015. — Vol. 10 (12):e0145138. http://dx.doi.org/10.1371/journal.pone.0145138.

57. Role of pneumolysin for the development of acute lung injury in pneumococcal pneumonia / M. Witzenrath, B. Gutbier, A. C. Hocke [et al.] // Crit Care Med. — 2006 Vol. 34 (7). — P. 1947—54. http://dx.doi.org/10.1097/01.CCM.0000220496.48295.A9; PMid:16715037

58. Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice / M. C. Dessing, R. A. Hirst, A. F. de Vos, T. van der Poll // PLoS One. 2009. — Vol. 4 (11). — P. 7993. http://dx.doi.org/10.1371/journal.pone.0007993.

59. Serotype 1 and 8 Pneumococci Evade Sensing by Inflammasomes in Human Lung Tissue / D. Fatykhova, A. Rabes, C. Machnik [et al.] // PLoS One. — 2015. — Vol. 10 (8). e0137108. http://dx.doi.org/10.1371/journal.pone.0137108.

60. Sorbara M. T. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis / M. T. Sorbara, D. J. Philpott // Immunol Rev. — 2011. —Vol. 243 (1). — P. 40—60. http://dx.doi.org/10.1111/j.1600-065X.2011.01047.x.

61. Storek K. M. Bacterial recognition pathways that lead to inflammasome activation / K. M. Storek, D. M. Monack // Immunol. Rev. — 2015. — Vol. 265 (1). — P. 112—29. http://dx.doi.org/10.1111/imr.12289.

62. Streptococcus pneumoniae Endopeptidase O (PepO) Elicits a Strong Innate Immune Response in Mice via TLR2 and TLR4 Signaling Pathways / H. Zhang, L. Kang, H. Yao [et al.] // Front Cell Infect Microbiol. — 2016. — Vol. 6. —P. 23. http://dx.doi.org/10.3389/fcimb.2016.00023.

63. Streptococcus pneumoniae endopeptidase O (PepO) is a multifunctional plasminogen- and fibronectin-binding protein, facilitating evasion of innate immunity and invasion of host cells / V. Agarwal, A. Kuchipudi, M. Fulde [et al.] // J. Biol. Chem. — 2013. — Vol. 288 (10). — P. 6849—63. http://dx.doi.org/10.1074/jbc.M112.405530.

64. Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1-dependent IL-8 release by lung epithelial BEAS-2B cells / B. Schmeck, K. Moog, J. Zahlten [et al.] // Respir. Res. — 2006. — Vol. 7. — P. 98. http://dx.doi.org/10.1186/1465-9921-7-98.

65. Streptococcus pneumoniae induced p38 MAPK- and NF-kappaB-dependent COX-2 expression in human lung epithelium / P. D. N'Guessan, S. Hippenstiel, M. O. Etouem [et al.] // Am. J. Physiol. Lung Cell Mol Physiol. — 2006. — Vol. 290 (6). — P. 1131—8. http://dx.doi.org/10.1152/ajplung.00383.2005.

66. Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs / U. Koppe, K. Hogner, J. M. Doehn [et al.] // J. Immunol. — 2012. — Vol. 188 (2). — P. 811—7. http://dx.doi.org/10.4049/jimmunol.1004143.

67. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin / S. Knippenberg, B. Ueberberg, R. Maus [et al.] // Thorax. — 2015. — Vol. 70 (7). — P. 636—46. http://dx.doi.org/10.1136/thoraxjnl-2014-206420.

68. Structural reevaluation of Streptococcus pneumoniae Lipoteichoic acid and new insights into its immunostimulatory potency / N. Gisch, T. Kohler, A.J. Ulmer [et al.] // J. Biol. Chem. — 2013. — Vol. 288 (22). — P. 15654—67. http://dx.doi.org/10.1074/jbc.M112.446963.

69. Szulc-Dabrowska L. Limfocyty Th17 w zakazeniach bakteryjnych / L. Szulc-Dabrowska, M. Gierynska, D. Depczynska [et al.] // Postepy Hig Med Dosw (online). — 2015. — Vol. 69. — P. 398—417. http://dx.doi.org/10.5604/17322693.1147868

70. Takeuchi O. Pattern recognition receptors and inflammation / O. Takeuchi, S. Akira // Cell. — 2010. — Vol. 140 (6). — P. 805—20. http://dx.doi.org/10.1016/j.cell.2010.01.022.

71. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia / M. Witzenrath, F. Pache, D. Lorenz [et al.] // J. Immunol. — 2011. — Vol. 187 (1). — P. 34—40. http://dx.doi.org/10.4049/jimmunol.1003143.

72. The Nod-like receptor (NLR) family: a tale of similarities and differences / M. Proell, S. J. Riedl, J. H. Fritz [et al.] // PLoS One. — 2008. — Vol. 3 (4):e2119. http://dx.doi.org/10.1371/journal.pone.0002119.

73. Tilg H. Interleukin-1 and inflammasomes in ALD/AAH and NAFLD/NASH / H. Tilg, A. R. Moschen, G. Szabo // Hepatology. — 2016. — Jan 16. http://dx.doi.org/10.1002/hep.28456.

74. TLR4 mediates pneumolysin-induced ATF3 expression through the JNK/p38 pathway in Streptococcus pneumoniae-infected RAW 264.7 cells / C. T. Nguyen, E. H. Kim, T. T. Luong [et al.] // Mol Cells. — 2015. — Vol. 38 (1). — P. 58—64. http://dx.doi.org/10.14348/molcells.2015.2231.

75. TLR9- and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia / J. Zahlten, R. Steinicke, W. Bertrams [et al.] // Eur. Respir. J. — 2013 — Vol. 41 (2). — P. 384—91. http://dx.doi.org/10.1183/09031936.00196311.

76. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins / G. Tomlinson, S. Chimalapati, T. Pollard [et al.] // J. Immunol. — 2014. — Vol. 193 (7). — P. 3736—45. http://dx.doi.org/10.4049/jimmunol.1401413.

77. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense / S. Knapp, C. W. Wieland, C. van't Veer [et al.] // J. Immunol. — 2004. — Vol. 172 (5). — P. 3132—8. http://dx.doi.org/10.4049/jimmunol.172.5.3132.

78. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection / B. Albiger, S. Dahlberg, A. Sandgren [et al.] // Сell Microbiol. — 2007. — Vol. 9 (3). — P. — 633—44. http://dx.doi.org/10.1111/j.1462-5822.2006.00814.x.

79. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections / J. H. Lim, B. Stirling, J. Derry [et al.] // Immunity. — 2007. — Vol. 27 (2). — P. 349—60. http://dx.doi.org/10.1016/j.immuni.2007.07.011.

80. Type I interferon protects against pneumococcal invasive disease by inhibiting bacterial transmigration across the lung / K. S. LeMessurier, H. Hacker, L. Chi [et al.] // PLoS Pathog. — 2013. — Vol. 9 (11). — P. 1003727. http://dx.doi.org/10.1371/journal.ppat.1003727.

81. Van der Poll T. Pathogenesis, treatment, and prevention of pneumococcal pneumonia / van der Poll T., S. M. Opal // Lancet. — 2009. — Vol. 374 (9700). — P. 1543—56. http://dx.doi.org/10.1016/S0140-6736(09)61114-4.

82. Van Rossum A. M. Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model / A. M. van Rossum, E. S. Lysenko, J. N. Weiser // Infect. Immun. — 2005. — Vol. 73 (11). — P. 7718—26. http://dx.doi.org/10.1128/IAI.73.11.7718-7726.2005.

83. Vanaja S. K. Mechanisms of inflammasome activation: recent advances and novel insights / S. K. Vanaja, V. A. Rathinam, K. A. Fitzgerald // Trends Cell Biol. — 2015. —Vol. 25(5). — P. 308—15. http://dx.doi.org/10.1016/j.tcb.2014.12.009.

84. Williams A. The role of NOD-like Receptors in shaping adaptive immunity / A. Williams, R. A. Flavell, S. C. Eisenbarth // Curr Opin Immunol. — 2010. — Vol. 22 (1). — P. 34—40. http://dx.doi.org/10.1016/j.coi.2010.01.004.

85. Zhang Z. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice / Z. Zhang, T. B. Clarke, J. N. Weiser // J. Clin. Invest. — 2009. —Vol. 119 (7). — P. 1899—909. http://dx.doi.org/10.1172/JCI36731.